Who said what: using machine learning to correctly attribute quotesThe Guardian Engineering BlogHow the Guardian uses spaCy and Prodigy to train a custom coreference resolution model.
Prodigy v1.10: Dependencies, relations, audio, video & moreVersion 1.10 of Prodigy includes tons of new features, including manual dependency and relation annotation, audio and video annotation, a new and improved image UI, new recipe callbacks, more settings for manual NER, plus various new config options and settings.
How Good is the Model in Model-in-the-loop Event Coreference Resolution Annotation?Ahmed, Nath, Regan, Pollins, Krishnaswamy, Martin (2023)Figure 6 illustrates the interface design of the annotation methodology on the popular model-in-the-loop annotation tool - Prodigy. We use this tool for the simplicity it offers in plugging in the various ranking methods we explained.
✨ prodigy v1.10.0Jun 16, 2020Dependency and relation annotation, audio, video, character-based NER & more
Coreference Resolution in spaCyIn everyday conversation, we use pronouns or other expressions to refer to entities in many different ways, but we effortlessly understand these references. In NLP this is a challenging problem known as Coreference Resolution. In this video, we’ll show how to train spaCy’s new component for Coreference Resolution and how to apply the pipeline to resolve references in a text.
End-to-end Neural Coreference Resolution in spaCyCoreference resolution is the problem of resolving entities in texts to references such as pronouns. Even if you've never heard of it, it's something we all do constantly every day, and is a key to understanding natural language. We recently added an experimental implementation of an end-to-end neural coreference component to spaCy. This post explains the architecture of our model in detail.